Abstract

We compared the importance placed on task skills and four personal characteristics when selecting members of virtual and face-to-face teams. We expected that task skills would be most important in selection decisions for virtual teams due to the lack of physical proximity and visibility, whereas personal characteristics would be more important for face-to-face team selection. In a policy capturing study, 100 undergraduates’ decision policies indicated that task skills had a greater impact on selection decisions for virtual teams. Gender also influenced selection decisions, with women choosing more female than male applicants for both types of teams. Applicants’ race, physical attractiveness, and attitudinal similarity to participants did not influence selection decisions for either type of team; however, when assessed by self-report evaluations, these characteristics and gender, had a greater influence for face-to-face teams.
Team Member Selection Decisions For Virtual Versus Face-to-Face Teams

Teams are popular forms of work design in the United States. Approximately 50 to 80% of US organizations use teams of some sort (Devine, Clayton, Philips, Dunford, & Melner, 1999; Gordon, 1992). Teams can be used in a variety of applications, including problem-solving, product development, quality control, project management, decision-making, planning, and negotiation (Sundstrom, De Meuse, & Futrell, 1990). More recently, a new form of team has been attracting the interest of both organizations and researchers. Factors such as rapid globalization, advances in technology, flatter organizational structures, synergistic cooperation among firms, and a shift to knowledge work environments have led to the formation of virtual teams, which eliminate the need for physical proximity among team members (Townsend, DeMarie, & Hendrickson, 1998). “A virtual team is a group of people who work interdependently with a shared purpose across space, time and organization boundaries using technology” (Lipnack & Stamps, 2000, p. 18). Such teams are becoming increasingly popular, and it is likely that their use will continue to grow (Cascio, 1999; Timmerman & Scott, 2006). Already, more than 50% of companies employing more than 5,000 workers make use of virtual teams, and more than 60% of professional workers belong to virtual teams (Martins, Gilson, & Maynard, 2004).

An important step in developing effective teams is the selection of team members (Jones, Stevens, & Fischer, 2000; Stevens & Campion, 1999). One approach involves managers or human resource professionals making selection decisions. They identify team needs, characteristics that will meet those needs, and assess and select qualified applicants. A second

1 A team can be defined as “two or more people who interact dynamically and interdependently and share a common and valued goal, objective or mission” (Reilly & McGourty, 1998, p. 245). While groups also share the defining features of interdependence and common goal, levels of interdependence and goal specificity are higher for teams.
Selection Decisions for Virtual vs. Face-to-Face Teams

approach is selection by team members. With this approach, current team members assess applicants and choose new members. Our focus is on this approach. Self-selection among groups and teams appears to be fairly common. One indication of this is the increasing use of self-managing teams (Kirkman & Shapiro, 2001), which are, by definition, self-staffing (Jones et al., 2000). Self-selection is also common in collegial, professional, and volunteer organizations, such as academia, consultancies, churches, and community organizations (Owens, Mannix, & Neale, 1998). Despite the widespread use and prevalence of self-selection, not much is known about how self-selection takes place—particularly, the characteristics that people perceive as important when selecting new team members. In addition, due to structural differences between face-to-face and virtual teams, individuals’ perceptions of the relative importance of team member characteristics may differ for each type of team. The purpose of the current study is to compare selection decisions with respect to the importance individuals assign to task skills and personal characteristics when selecting members for face-to-face and virtual teams.

Virtual Versus Face-to-face Teams

Two features distinguish virtual teams from face-to-face teams: spatial distance and communication media (Bell & Kozlowski, 2002). Members of face-to-face teams work in close physical proximity and communicate primarily face-to-face. Virtual team members, on the other hand, are physically separated from each other and rely mainly on technological devices for communication and information exchange. Thus, virtual team environments not only lack a shared physical setting, but, depending on the technology used, members are also invisible to each other (Finholt & Sproull, 1990). This gives rise to differences in interaction processes and outcomes between face-to-face and virtual teams. Conversation in face-to-face teams involves verbal, paraverbal, and non-verbal expression, whereas paraverbal and non-verbal cues are
typically absent in virtual teams (Warkentin, Sayeed, & Hightower, 1997). As a result, communication is less efficient, relational links among members are weaker, and members experience greater difficulty with socio-emotional processes such as relationship building, cohesion, and trust (Hightower & Sayeed, 1996; Powell, Piccoli, & Ives, 2004; Warkentin et al., 1997). Some studies have found, however, that over time virtual teams are able to overcome some of the communication and socio-emotional problems that members initially face (e.g. Chidambaram, 1996). Virtual teams also typically excel at idea-generation and brainstorming tasks, due to fewer interruptions and greater equality in participation among members (Martins et al., 2004).

Team Member Selection

While several studies have looked at communication, interpersonal, and performance differences between face-to-face and virtual teams, no studies, as far as we know, have examined selection differences between the two types of teams. Given the structural dissimilarities between face-to-face and virtual teams, we expect that these dissimilarities will influence the importance placed on task skills and personal characteristics of applicants to the two types of teams. We discuss task skills and four personal characteristics of team members below.

Task Skills and Personal Characteristics

Teams are formed for the purpose of performing a task or a series of related tasks (Ilgen, Major, Hollenbeck, & Sego, 1995). Therefore, for the success of the team it is important that members have the necessary skills to perform the team’s primary task or tasks. For example, members of songwriting teams should be skilled in writing compelling lyrics and catchy melodies; members of research teams should be skilled in research methods, data analysis, and interpretation. Therefore, while selecting team members, direct task skills should be important to
members of both virtual and face-to-face teams.

Personal characteristics include attributes that people are born with (e.g., gender, race, physical attractiveness) or acquire over long periods of socialization (e.g., attitudes, ethnic identification, religion). Personal characteristics are not usually directly related to job or task performance. For example, a person’s race, gender, or physical attractiveness should be irrelevant to his or her ability to write compelling lyrics and catchy melodies or analyze and interpret research data. Nevertheless, they can indirectly influence team performance to the extent that personal attributes influence team processes (e.g., communication patterns, problem-solving strategies, trust, conflict). This can happen when team members are overtly or unconsciously prejudiced against, or uncomfortable with, people with certain personal characteristics (Dovidio, Gaertner, Kawakami, & Hodson, 2002).

Personal characteristics are, in most instances, noticeable and salient only when people interact with one another in face-to-face settings. The physical proximity and visibility of members in face-to-face teams make personal characteristics salient, and these characteristics often serve as cues that bias people in favor of selecting members who are similar to themselves (Kandel, 1978; Wade & Okesola, 2002). On the other hand, because virtual team members typically cannot see (or hear) one another personal characteristics should be less salient in virtual teams. Indeed, virtual teams tend to be more culturally diverse than face-to-face teams (Hinds & Bailey, 2003). The absence of visual cues in virtual teams should create situations where members of these teams will be more likely than members of face-to-face teams to focus on task skills when selecting new team members.

Hypothesis 1: Task skills of team applicants will be rated as more important than personal characteristics in selection decisions for a virtual team than a face-to-face
Physical attractiveness, race, gender, and attitudinal similarity are four personal characteristics that are salient in face-to-face teams. The first three are immediately obvious when people meet face-to-face, and the latter usually becomes apparent after a short period of interaction. Furthermore, these characteristics typically have a significant halo effect—that is, they influence perceptions beyond the immediate characteristic. Physically attractive people are viewed more positively than unattractive people (Dion, Berscheid, & Walster, 1972). For example, attractive professionals are perceived as friendlier, better organized, and more competent than unattractive professionals (e.g., Goebel & Cashen, 1979). A meta-analysis on physical attractiveness found a strong halo effect for physical attractiveness on social competence and a moderate effect on intellectual competence (Eagly, Ashmore, Makhijani, & Longo, 1991). The positive halo of physical attractiveness has also been found in selection contexts, with both college students and professional interviewers giving higher ratings to attractive candidates (Dipboye, Fromkin, & Wiback, 1975). Given its salience as a visual cue, we expect that physical attractiveness will be more important in selection decisions for face-to-face teams than for virtual teams.

Hypothesis 2: The physical attractiveness of team applicants will be rated as more important in selection decisions for a face-to-face team than a virtual team.

Race influences interview ratings, friendship choices, and the selection of peers. Wade and Okesola (2002), for example, found that racial identity and feelings of racial similarity were associated with African-American students’ choice of a peer group. Likewise, Kandel (1978) found that race was one of the most important variables influencing interpersonal attraction among adolescent friendship pairs. A number of studies reported that racial similarity had a
significant effect on employment interview decisions (Campion, Pursell, & Brown, 1988; Lin, Dobbins, & Farh, 1992; Mullins, 1982; Prewett-Livingston, Feild, Veres III, & Lewis, 1996). Like physical attractiveness, race is salient in face-to-face settings.

Hypothesis 3: The race of team applicants will be rated as more important in selection decisions for a face-to-face team than a virtual team.

Although significant advances have been made in women’s representation in most occupations, discrimination in hiring women still exists in some occupations (Browne, 2002). Recent research, however, suggests that women prefer to work in groups with other women rather than in mixed-sex groups (Colarelli, Spranger, & Hechanova, 2006; Rudman & Goodwin, 2004). Men tend to dominate "air time" in mixed groups, and men may also pose a sexual threat to women. Therefore, women will be more likely to select other women as team members for face-to-face teams. However, the situation may be different for virtual teams. Participation rates are roughly equal between men and women in virtual teams (Adrianson 2001; McGuire, Kiesler, & Siegel, 1987), and because of the physical separation inherent in virtual teams, women may feel less threatened or intimidated by men (Colarelli et al., 2006).

Hypothesis 4a: The gender of team applicants will be rated as more important in selection decisions for a face-to-face team than a virtual team.

Hypothesis 4b: Women will choose women more often than men as team members of a face-to-face team.

Attitudinal similarity is an important variable in studies on interpersonal attraction (Berscheid & Reis, 1998; Byrne, 1971). Strangers with similar beliefs and values are rated as more likable than those who are dissimilar (Byrne & Nelson, 1965; Tesser, 1993). Protégés are more likely to be satisfied with mentors and receive greater support from mentors who have
Atitudes similar to themselves (Ensher, Grant-Vallone, & Marelich, 2002). Both in performance evaluations and in interview evaluations, candidates with similar attitudes receive higher ratings (Baskett, 1973; Peters & Terborg, 1975; Turban & Jones, 1988). Attitudinal similarity probably influences evaluations through its effect on interpersonal attraction—we tend to find similar people more attractive and likable. Similarity in attitudes can also lead to more confidence and trust among individuals as well as better quality interactions (Turban & Jones, 1988). Close interactions and extensive communication are important features of face-to-face teams, and therefore members of face-to-face teams will be more likely than members of virtual teams to pick up on cues of attitudinal similarity.

Hypothesis 5: Attitudinal similarity of team applicants will be rated as more important in selection decisions for a face-to-face team than a virtual team.

Method

Participants

Participants were a hundred undergraduate students (34 male and 66 female) from a Midwestern university. Mean age of participants was 22 years. Seventy were Caucasian, 18 African-American, 2 Hispanic, 1 Asian, and 9 were from other ethnic groups. Ninety-nine participants stated that they had previously worked as part of a face-to-face team; 46 stated that they had previously worked as members of a virtual team.

Stimulus Materials and Measures

Hypothetical profiles of potential team members were created, with each profile containing different levels of the 5 team member characteristics of task skills, physical attractiveness, race, gender, and attitudinal similarity. Physical attractiveness, race, and gender were indicated in photographs of candidates, while the attributes of task skills and attitudinal
similarity were presented in the form of statements below the photograph. Male and female candidates were presented as unattractive, average, or attractive, and were Caucasian, African-American, or Asian. For each candidate, task skills were described as poor, below average, average, above average, excellent, and attitudinal similarity as dissimilar, somewhat similar, similar.

Photographs (face and shoulders) of potential team members (average age between 19-21 years) for the profiles were obtained from an internet search. Photographs were downloaded from Yahoo Personals website and from websites of modeling agencies. A total of 126 photographs were downloaded with more or less equal numbers of males (62), females (64), Asians (41), African-Americans (42), and Caucasians (43). These 126 photographs were then distributed among 24 graduate psychology students who rated each photograph as unattractive, average, or attractive. Four groups of raters were created with six raters in each group. This was done so that each rater would not have to rate all the 126 photographs. Each group of raters was given either 31 or 32 photographs to rate. After the ratings were obtained, inter-rater reliabilities were calculated for each of the four groups. The inter-rater reliabilities were .86, .91, .86, and .91. The obtained attractiveness ratings were standardized and then averaged across raters for each photograph. The bottom one-third of the photographs were labeled unattractive (-1.69 to - .53), the middle one-third as average (-.52 to .32), and the top one-third as attractive (.41 to 1.62). For the final selection of rated photographs for the study, it was necessary to select equal numbers from each category of race, gender, and attractiveness. This resulted in 18 race x gender x attractiveness categories.

From the 126 photographs, 70 (35 for each type of team: face-to-face and virtual) were selected. Photographs were selected with the help of a random numbers table so that each
photograph from each category would have an equal opportunity of being selected. The order of appearance of the photographs when presented to participants was also done by random assignment. Once the photographs were selected, the values for task skills and attitudinal similarity were distributed in such a way that the intercorrelations between the five variables (race, gender, physical attractiveness, task skills, attitudinal similarity) would not exceed .10.

Rating Tasks

The dependent variable was measured by the question “Would you choose this person as a member of your face-to-face/virtual team?” Ratings were obtained from participants on a 7-point Likert scale ranging from highly unlikely to highly likely. Two more judgments were obtained from participants by asking them to rate the importance of each team member characteristic. One set of judgments asked participants to distribute a total of 100 points among the 5 characteristics, and the other set asked them to rate each characteristic on a 10-point scale ranging from least important to most important. These importance weights and ratings were obtained to compare participants’ policy decisions with self-reported judgments and examine differences if any.

Procedure

A personal web space and access database were created for presentation of profiles to participants. Participants were first provided a sheet with definitions of terms important to the study. They were given the following scenario “Imagine that you are required to participate in a class project which will form part of your grades for the course. This class project is a 3-member face-to-face/virtual team project, the successful completion of which requires members to meet regularly and work together. You are being given the opportunity to select the other two members of your face-to-face/virtual team. Below is a photograph and other qualities about one
of the candidates. Based on the information provided to you, please indicate the likelihood of your selecting this person as a face-to-face/virtual team member.”

Participants were presented with the 70 hypothetical team member profiles and asked to state the likelihood of their selecting each hypothetical person as a team member. The order of presentation of profiles based on type of team was reversed for each participant, so that 50% of the participants viewed the face-to-face team profiles first, and the other 50% viewed the virtual team profiles first. When rating of the 70 profiles was completed, the self-report importance weights and ratings forms were presented and participants were asked to rate the importance they place on each team member characteristic.

Results

Using a repeated measures analysis of variance (ANOVA), each of the average standardized regression coefficients (mean beta weights) obtained for face-to-face teams were compared against corresponding coefficients for virtual teams (see Table 1). The task skills coefficient for virtual teams was significantly greater than the coefficient for face-to-face teams, supporting hypothesis 1 \[F(1, 99) = 5.86, p < .05 \]. Six percent of the variance in the task skills coefficient was explained by type of team. Although the mean coefficient for gender for both teams was small, the gender coefficient for face-to-face teams was significantly greater than the coefficient for virtual teams, supporting hypothesis 4a \[F(1, 99) = 12.88, p < .01 \]. Twelve percent of the variance in the gender coefficient was explained by type of team. No group differences emerged for attitudinal similarity, race, and physical attractiveness, and so
hypotheses 2, 3, and 5 were not supported.

Whether or not similarity in gender made a difference in selection decisions was examined separately (see tables 2a and 2b for gender). Women selected significantly more women for both virtual and face-to-face teams. Men also tended to select more women, but the results for men did not approach significance for face-to-face ($p = .07$) and virtual ($p = .39$) teams.

In addition to the policy capturing study, participants were also asked to self-report the importance they attach to each team member characteristic. Two sets of judgments were obtained. Self-reported importance weights were obtained by asking participants to distribute 100 points among the five team member characteristics, while self-reported importance ratings were obtained on a 10-point importance scale. The same analysis conducted for the policy capturing study was also done for these two sets of judgments to determine whether there was any agreement between the information obtained from the policy capturing study and the self-reported judgments. Table 3 provides the means, standard deviations, and repeated measures ANOVA results for self-reported importance weights based on type of team. As in the policy capturing data, highest weights were assigned to task skills for both types of teams, followed by attitudinal similarity. Race received the lowest weights. The data also support all five hypotheses. Task skills were assigned significantly greater weights for virtual teams ($M = 60.61$) than face-to-face teams ($M = 53.80$), while all other characteristics were assigned significantly greater weights for face-to-face teams than virtual teams.
A repeated measures ANOVA for self-reported importance ratings showed similar results, except in the case of task skills (see Table 4). There was no significant difference in the mean rating for task skills between the two types of team. The other four characteristics had significantly higher mean ratings for face-to-face teams than virtual teams.

Correlations were also obtained between self-reports and policy capturing results. Correlations were low to moderate, indicating that agreement between the policy capturing data and the self-reported data was not high. In addition, self-reported weights had better correlations with policy capturing data than self-reported ratings. The highest correlation was for race ($r = .55$, $p < .01$) between self-reported weights and policy capturing data. Gender showed the lowest correlation (-.01 for face-to-face team and .05 for virtual team) for self-reported weights and policy capturing data, indicating a difference in the way participants made selection decisions and reported importance. Overall, there was better agreement between the two sets of self-reported data than between policy capturing data and self-reports.
Discussion

The present study examined differences in team member selection decisions between face-to-face and virtual teams. Given that physical proximity and visibility are important features of face-to-face teams and absent in virtual teams, we expected that personal characteristics such as physical attractiveness, race, gender, and attitudinal similarity would have a greater impact on selection decisions for face-to-face teams than virtual teams, while task skills would be more influential in selection decisions for virtual teams. When participants’ decision policies were assessed with a policy capturing methodology, task skills were significantly more important than personal characteristics in selecting members of virtual teams. Unexpectedly, only one personal characteristic, gender, influenced selection decisions for face-to-face teams when a policy capturing methodology was used.

However, when participants gave self-report ratings individually for each characteristic, all five hypotheses were supported: they rated task skills as more important for virtual teams and personal characteristics as more important for face-to-face teams. This discrepancy between decision cues used in policy capturing and self-report methodologies is fairly typical in the decision-making literature (Brehmer & Brehmer, 1988). Correlations between policy judgments and self-reports tend to be modest. With a policy capturing methodology, raters are simultaneously presented with multiple stimuli; their decision about one attribute is influenced by the context of the other attributes. Thus, policy capturing decisions are similar to real-life decisions: they involve multiple attributes, and people are often unaware of their rating policies for a particular attribute (Slovic & Lichtenstein, 1971). On the other hand, self-report judgments are somewhat artificial: decision-makers are asked to pay attention to each stimulus separately. When focusing on a particular attribute, people pay more attention to it and tend to give it more
weight in decisions. The moderate to low correlations between the policy judgments and the self-reported judgments in the present study are probably due to this difference in attention and context.

Women participants chose women more often than men applicants, as hypothesized, for face-to-face teams. This is consistent with previous research, which found that women prefer to work with other women (Rudman & Goodwin, 2004). Women may prefer to work with other women in face-to-face teams because when men are present, women typically have less opportunity to speak—men do most of the talking in mixed-sex groups. Also, women may be uncomfortable in mixed groups due to the potential for sexual advances (Colarelli et al., 2006). Contrary to our hypotheses, we found that women participants chose women more often than men for virtual team members. Why women showed a gender preference for virtual teams is less clear. One possibility is that because women are, on average, more conscientious than men, they may trust women more than they do men and expect other women to be more reliable work partners, in both face-to-face and virtual teams.

Implications

The findings of the current study are important because of the popularity of virtual teams. As more and more organizations increase their global operations, the formation of virtual teams becomes a cost effective way to deal with new workplace demands. By spanning geographical and cultural boundaries, virtual teams open up more diversity in the workplace. However, our results must be interpreted cautiously because of two limitations. Our sample consisted of college students, so our results may or may not generalize to older, working adults. For example, that we did not find selection effects for most of the personal characteristics (using a policy capturing methodology) could be due to the sample—college students may be more comfortable
working with diverse team members than older adults. Also, as with most policy capturing studies, we examined hypothetical decisions. Therefore, additional research is needed that generalizes to other samples and settings.

Nevertheless, our results are sufficiently intriguing to examine possible implications. That task skills were more important in decision policies for selecting members of virtual teams than face-to-face teams suggests that virtual environments lead to a greater focus on task-relevant characteristics. Moreover, the fact that none of the personal characteristics – except gender – had a significant effect on team member selection for both types of teams is encouraging. This suggests that biases related to physical attractiveness, race, and attitudinal similarity may not be as prevalent in selecting members of teams as the literature implies.

Personal characteristics gained salience only when participants were asked to make a self-report judgment on each characteristic. Thus, one way to reduce demographic biases in the selection of team members would be to downplay individual personal characteristics and focus on multiple attributes of the whole person. That is, rather than drawing attention to, say, a person’s gender or race, presenting multiple attributes in a broader context may yield less biased selection decisions. Finally, although (policy capturing) selection decisions were similar for virtual and face-to-face teams, it would be worthwhile to explore personnel decisions in teams using other communication media—such as real-time teleconferencing. This will further our understanding of how new communication modalities by which diverse people work together influence selection fairness.
References

Table 1

Repeating Measures Analysis of Effects of Type of Team: Differences between mean beta weights for face-to-face and virtual teams

<table>
<thead>
<tr>
<th></th>
<th>Face-to-face Team</th>
<th>Virtual Team</th>
<th>(F)</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Beta Weights</td>
<td>Mean Beta Weights</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task Skills</td>
<td>.84</td>
<td>.88</td>
<td>5.86</td>
<td>.02</td>
<td>.06</td>
</tr>
<tr>
<td>Attitudinal Similarity</td>
<td>.06</td>
<td>.05</td>
<td>.92</td>
<td>.34</td>
<td>.01</td>
</tr>
<tr>
<td>Gender</td>
<td>.04</td>
<td>.00</td>
<td>12.88</td>
<td>.00</td>
<td>.12</td>
</tr>
<tr>
<td>Physical Attractiveness</td>
<td>.04</td>
<td>.03</td>
<td>1.53</td>
<td>.22</td>
<td>.02</td>
</tr>
<tr>
<td>Race (African-American vs. Caucasian)</td>
<td>.01</td>
<td>.02</td>
<td>.41</td>
<td>.52</td>
<td>.00</td>
</tr>
<tr>
<td>Race (Asian vs. Caucasian)</td>
<td>-.01</td>
<td>.01</td>
<td>2.30</td>
<td>.13</td>
<td>.02</td>
</tr>
</tbody>
</table>

Note. \(N = 100; \) \(M = \) Mean; \(p < .05 \)
Race was dummy coded with Caucasian as the reference group.
Table 2a
Repeated Measures Analysis of Gender Selection for Face-to-face Team

<table>
<thead>
<tr>
<th>Participants</th>
<th>Avg. Males Selected</th>
<th>Avg. Females Selected</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males (N = 34)</td>
<td>7.09</td>
<td>7.62</td>
<td>3.56</td>
<td>.07</td>
</tr>
<tr>
<td>Females (N = 66)</td>
<td>6.98</td>
<td>7.32</td>
<td>4.55</td>
<td>.04</td>
</tr>
</tbody>
</table>
Table 2b
Repeated Measures Analysis of Gender Selection for Virtual Team

<table>
<thead>
<tr>
<th>Participants</th>
<th>Avg. Males Selected</th>
<th>Avg. Females Selected</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males (N = 34)</td>
<td>7.44</td>
<td>7.65</td>
<td>.77</td>
<td>.39</td>
</tr>
<tr>
<td>Females (N = 66)</td>
<td>6.82</td>
<td>7.03</td>
<td>3.94</td>
<td>.05</td>
</tr>
</tbody>
</table>
Table 3
Means, Standard Deviations, and Repeated Measures Analysis of Self-reported Weights

<table>
<thead>
<tr>
<th></th>
<th>Face-to-face Team</th>
<th>Virtual Team</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Skills</td>
<td>53.80 20.79</td>
<td>60.61 20.62</td>
<td>36.79</td>
<td>.00</td>
<td>.27</td>
</tr>
<tr>
<td>Attitudinal Similarity</td>
<td>29.89 17.32</td>
<td>27.61 16.22</td>
<td>3.91</td>
<td>.05</td>
<td>.04</td>
</tr>
<tr>
<td>Gender</td>
<td>5.88 7.67</td>
<td>4.91 8.26</td>
<td>4.86</td>
<td>.03</td>
<td>.05</td>
</tr>
<tr>
<td>Physical Attractiveness</td>
<td>6.80 9.62</td>
<td>3.84 7.74</td>
<td>19.46</td>
<td>.00</td>
<td>.16</td>
</tr>
<tr>
<td>Race</td>
<td>4.38 8.03</td>
<td>3.08 7.11</td>
<td>10.58</td>
<td>.00</td>
<td>.10</td>
</tr>
</tbody>
</table>

Note. N = 100; SD = Standard Deviation; p < .05
Table 4
Means, Standard Deviations, and Repeated Measures Analysis of Self-reported Ratings

<table>
<thead>
<tr>
<th></th>
<th>Face-to-face Team</th>
<th>Virtual Team</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Skills</td>
<td>9.45 1.32</td>
<td>9.50 1.28</td>
<td>1.09</td>
<td>.30</td>
<td>.01</td>
</tr>
<tr>
<td>Attitudinal Similarity</td>
<td>7.55 2.06</td>
<td>7.02 2.37</td>
<td>15.20</td>
<td>.00</td>
<td>.13</td>
</tr>
<tr>
<td>Gender</td>
<td>2.70 2.04</td>
<td>2.07 1.70</td>
<td>22.94</td>
<td>.00</td>
<td>.19</td>
</tr>
<tr>
<td>Physical Attractiveness</td>
<td>2.85 2.10</td>
<td>1.78 1.83</td>
<td>45.98</td>
<td>.00</td>
<td>.32</td>
</tr>
<tr>
<td>Race</td>
<td>2.20 1.91</td>
<td>1.87 1.68</td>
<td>7.00</td>
<td>.01</td>
<td>.07</td>
</tr>
</tbody>
</table>

Note. N = 100; SD = Standard Deviation; p < .05